
EVALUATING THE EFFICIENCY OF DSP BLOCK
SYNTHESIS INFERENCE FROM FLOW GRAPHS

Bajaj Ronak, Suhaib A. Fahmy

School of Computer Engineering
Nanyang Technological University

Nanyang Avenue, Singapore
email: {ronak1,sfahmy}@ntu.edu.sg

ABSTRACT
The embedded DSP Blocks in FPGAs have become signifi-
cantly more capable in recent generations of devices. While
vendor synthesis tools can infer the use of these resources,
the efficiency of this inference is not guaranteed. Specific
language structures are suggested for implementing stan-
dard applications but others that do not fit these standard
designs can suffer from inefficient synthesis inference. In
this paper, we demonstrate this effect by synthesising a num-
ber of arithmetic circuits, showing that standard code results
in a significant resource and timing overhead compared to
considered use of DSP Blocks and their plethora of config-
uration options through custom instantiation.

1. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have evolved sig-
nificantly and found use within new market segments dur-
ing the past two decades. An increase in the types and
capabilities of heterogeneous resources means FPGAs are
now well-equipped for use across a much wider range of
domains. However, this increases design automation com-
plexity. Tools must now evaluate the possible options for
mapping specific functions to logic or hard macro blocks.
Standard signal processing circuits, such as finite impulse
response (FIR) filters are well understood by the tools and
can be mapped efficiently to the embedded DSP Blocks. The
difficulty arises when other algorithms that can benefit from
hard blocks are synthesised: often, the tools fail to find the
most efficient mapping. This is especially true where the
hard blocks can be configured in multiple ways, as with the
DSP Blocks on modern devices.

For computation-dominated applications, one fundamen-
tal step to bridging the gap between FPGAs and ASICs is to
ensure that arithmetic is performed as efficiently as possible
and this is where hard blocks excel. In recent Xilinx devices,
the DSP Blocks can be dynamically programmed to execute
many functions. Fig. 1 shows a simplified representation of
the DSP48E1 primitive.

+/-

+ -
D

/

/

/

/

18

30

25

48

/
48

B

A

D

C

PMultiplier
25x18

Pre-adder
25-bit

X

Fig. 1: Basic structure of DSP48E1 primitive.

In FPGA implementations of many DSP-amenable ap-
plications, we observed that synthesising standard RTL code
and relying on synthesis tools to correctly infer the use of
DSP Blocks results in sub-optimal results with significant
extra logic, even in cases where none is needed. In this pa-
per, we set out to explore this phenomenon through a com-
parison between automated synthesis and manual mapping.

We synthesise a set of circuits that should map well to
DSP Blocks, and compare the resource usage of two stan-
dard RTL implementations of each circuit with a manual im-
plementation where DSP Blocks are manually instantiated,
from analysis of their dataflow representations. We find that
automated synthesis does indeed result in a significant over-
head in terms of resource utilisation and clock frequency.

2. RELATED WORK

In [1], algorithms are represented using synchronous data-
flow graphs and techniques are proposed for mapping them
to pipelined datapaths on FPGAs. As multiplexers with a
large number of inputs are costly on FPGAs, the main fo-
cus is to minimise resource usage and latency by minimising
the number of multiplexers. [2] extends the Grape-II [3] tool
for automatic code generation for task communication and
scheduling on FPGAs. [4] proposes techniques to minimise
interconnect area by efficient functional unit, register, and
interconnection allocation, based on the dependence of op-
erations in the dataflow graphs. A tool is proposed in [5] to
convert dataflow graphs into synthesisable VHDL descrip-



×

A B

+

C

out

(a) C+(A×B)

−

A D

×

B

+

C

out

(b) C+(D−A)×B

+

A D

×

B

+

out

(c) out = out+(A+D)×B

Fig. 2: Dataflow graphs of templates

tions, but, it does not deal with hard blocks in the FPGA.
Odin-II [6], is an open-source Verilog synthesis tool.

While it can map to embedded multipliers, it does not deal
with the more complex DSP Blocks we find today. Previous
work [7] has shown how programmability of DSP Blocks
can be leveraged to build a general-purpose processor.

We have not found any work that focusses on mapping
dataflow graphs directly to modern DSP Blocks. Papers fo-
cusing on DSP architectures mainly optimise multiply and
multiply-accumulate operations, but DSP algorithms can be
implemented more efficiently with considered use of the DSP
Blocks available on FPGAs. This has become more impor-
tant as DSP Blocks are now more complex and dynamically
reprogrammable.

It is also important to note where inference can occur
within the implementation chain. While the technology map-
per can process the synthesis output netlist, there may be
sufficient information in an RTL description to make this de-
cision up front. This may impact the efficiency of inference.
What compounds this problem is that the mapping is not to
a single fixed structure, but rather to a range of possible DSP
Block configurations.

3. COMPARISON APPROACH

In this paper, we investigate the disparity between automatic
inference of DSP Blocks from dataflow graphs, and direct
instantiation of various DSP configuration templates. Con-
ventionally, algorithms are implemented in hardware descrip-
tion languages (HDLs) like Verilog and VHDL. During tech-
nology mapping, the implementation tools determine how
individual portions of logic should be mapped to the re-
sources available on the target device. This is where het-
erogeneous resources are usually inferred. Vendors provide
specific coding styles that help coax the tools to infer ef-
ficiently. While this works for generalised structures like
finite impulse response (FIR) filters, other non-regular, non-
standard structures can suffer from sub-optimal inference.

We can see in Fig. 1 that there are three main stages in
the DSP48E1 primitive: a pre-adder, a multiplier, and an
ALU stage. Specific configuration inputs control the types

Table 1: Results

Method DSPs LUTs Regs
Max Freq

(MHz)

Comb 1 235 99 518
Pipe 1 0 0 560
Direct 1 0 0 560

always @ (posedge CLK)
begin
pipe_reg_A1 <= A; pipe_reg_B1 <= B;
pipe_reg_D <= D; pipe_reg_B2 <= pipe_reg_B1;
pipe_reg_AD <= pipe_reg_D + pipe_reg_A1[24:0];
pipe_reg_C <= C;
pipe_reg_M <= pipe_reg_AD * pipe_reg_B2;
pipe_reg_P <= pipe_reg_M + pipe_reg_C;

end
assign P = pipe_reg_P;

Fig. 3: Verilog code of pipelined implementation

of operations and can be set at run time, or fixed when in-
stantiating the DSP48E1 primitive, by hard-wiring those ports.
After analysing different configuration options, we prepared
a database of 29 different DSP Block configurations. Data-
flow graphs of three configurations are shown in Fig. 2. Non-
arithmetic functions are not considered in this paper.

If standard arithmetic is coded at RTL level, the im-
plementation tools decide how to use the DSP Blocks, and
hard-wire the configuration accordingly. As a first step, we
consider an example, of a circuit mirroring the function of
a DSP Block ((A+D)×B)+C. This expression can be coded
in RTL as combinational logic, in a pipelined manner mir-
roring the structure of a DSP Block, or by direct instanti-
ation of a DSP Block in RTL code with correct configura-
tion options. Code for the pipelined version of the expres-
sion mentioned above is shown in Fig. 3. When we process
this simple circuit through the implementation tools, we ob-
tain the results shown in Table 1. Extra pipeline stages are
added at the output of the combinational implementation to
equalise the number of pipeline stages of all three imple-
mentation. We observe that for the combinational imple-
mentation, the tools use extra resources, which can be oth-
erwise implemented with only one DSP Block. The tools
were able to infer the DSP Block, without extra resources
from the pipelined RTL code. Hence, it seems there is some
intelligence in the tools, but we are interested in seeing how
this changes with more complex circuits.

When similar implementations are done for larger cir-
cuits, we observe that the tools do not infer DSP Blocks
efficiently. In our experiments, we implement a variety of
arithmetic circuits using three different methods as we did
for the single block. In the first method (Comb), logic is
implemented combinationally, with register stages added at
the end to match the delay through a DSP Block allowing
the tools to re-time the design.

In the second method (Pipe), code is written in syn-



chronous RTL to match the structure of the DSP Blocks,
with the expectation that the tools will infer their use. For
subsequent DSP stages, we truncate the values to fit. We
assume a fixed-point representation with a large number of
fractional bits (as is typical in DSP systems), resulting in a
loss of precision, but maintaining scale. This truncation is
done in all designs.

The third method (Direct) is by direct manual instantia-
tion of templates from the database previously mentioned.
Although we use the DSP Blocks to implement as much
logic as possible, there is still a need to add external regis-
ters to ensure inputs to the DSP blocks are correctly aligned.
Furthermore, we must balance the pipeline branches across
the graph so that separate DSP Blocks produce results at
the correct time for subsequent stages. Segmentation of the
graphs is done so that the number of segments is minimised
by using as many features of the DSP Block as possible.
The circuit is then implemented by direct instantiation of
templates. All three implementations are written to have the
same number of pipeline stages.

DSP Blocks allow cascading using dedicated wires. The
P output of one block can be connected to C input of the ad-
jacent block without using routing resources. However, in
many of our designs, the P output must connect to the A or
B inputs, for which no dedicated wiring is provided. Hence,
to mitigate significant routing delay, we add a pipeline reg-
ister at the output of each DSP Block, so that the routing de-
lay between two connecting DSP Blocks can be eliminated.
This change can result in over a 40% speed improvement.

4. RESULTS

We implemented a variety of algorithms for this investi-
gation. Algebraic expressions of the Savitzky-Golay filter,
Mibench2 filter, Quadratic Spline, and Chebyshev Polyno-
mial from [8] were implemented from their dataflow graphs.
An example segmentation of the Mibench2 flow graph is
shown in Fig. 4. The Polynomial Test Suite in [9] contains a
large number of multivariate polynomials. We implemented
four of these. Resource usage and timing results for the three
methods using Xilinx ISE 13.2 are shown in Table 2 and
Fig. 5.

We observe some interesting results. Firstly, the attain-
able frequency is always highest using direct instantiation.
Since all logic is moved into the DSP Block, except two-
input adders with no other associated logic, and since we
fully pipeline the DSP Block, we are able to achieve the
maximum frequency for these designs.

We see that the Comb implementation has the worst tim-
ing. Even with register balancing (retiming) enabled and
ample register stages added, the tools do not seem to be
able to use more than one internal pipeline stage in the DSP
Block. Furthermore, the tools only use the multiply oper-

×

6 z

×

3 z

+

x 2y

+

y

+

2x

+

x
y

×

x

×

y

× ×

43

+ +

+

z

Fig. 4: Mibench2 filter dataflow graph with segmentation

Table 2: Results

Method DSPs LUTs Regs
Max Freq

(MHz)

SG Filter
Comb 7 184 147 57
Pipe 5 407 729 203
Direct 6 126 342 486

Mibench2
Comb 7 214 202 88
Pipe 6 238 600 314
Direct 7 175 493 487

Q Spline
Comb 12 309 168 54
Pipe 13 278 615 428
Direct 14 317 694 514

Chebyshev
Comb 3 181 140 73
Pipe 3 129 347 253
Direct 3 40 142 515

Poly1
Comb 4 291 177 106
Pipe 4 151 206 504
Direct 4 198 230 560

Poly2
Comb 4 295 174 89
Pipe 4 259 515 256
Direct 5 100 180 548

Poly3
Comb 6 184 156 74
Pipe 6 270 597 212
Direct 6 152 376 506

Poly4
Comb 3 89 120 126
Pipe 3 209 532 211
Direct 3 65 262 507

ation when synthesising the Comb representation. In some
designs, Direct and Pipe implementations use more registers
and LUTs. The LUTs are used as route-thrus with same-
slice registers, and as shift registers in delay lines.

We can see that the Pipe implementation generally in-
fers DSP Blocks well compared to Comb, given that the
code closely mirrors the structure of DSP Block. The tools
were also able to infer multiple configurations of the DSP
Block. But, sometimes the tools leave some functions in
logic that could use a DSP Block, such as a wide three-input
add. Though there is no multiply involved, this function can
be moved into a DSP Block, and hence save logic area, and
optimise timing.

We found the frequency of Pipe to be significantly less
than Direct, except in two algorithms (Quadratic Spline and



No of DSP48E1s No of Slice LUTs No of Slice Registers

7

C

184

147

57

5

P

407

729

203

6

D

126

342

486

SG Filter

7

C

214

202

88

6

P

238

600

314

6

D

126

342

487

Mibench2

12

C

168

309

54

13

P

278

315

428

14

D

317

694

514

Q Spline

3

C

181

140

73

3

P

129

347

253

3

D

142

515

40

Chebyshev

4

C

291

177

106

4

P

151

206

504

4

D

198

230

560

Poly1

4

C

295

174

89

4

P

259

515

256

5

D

100

180

548

Poly2

6

C

184

156

74

6

P

270

597

212

6

D

152

376

506

Poly3

3

C

89
120

126

3

P

209

532

211

3

D

262

507

65

Poly4

R
es
o
u
rc
e
U
sa
g
e

M
a
x
F
re
q
(M

H
z)

Fig. 5: Resource usage and maximum frequency results.

Poly1). This can be attributed to sub-optimal mapping and
inefficient use of the pipeline stages inside the DSP Blocks.
The dataflow graphs of Quadratic Spline and Poly1 are sym-
metric and balanced, and thus the tools are able to map them
effectively. The number of LUTs used as route-thrus is also
less for these two circuits.

If we compare the LUT usage between the three meth-
ods, Direct results in 69% less to 31% more usage com-
pared to Pipe; and 78% less to 2.6% more usage compared
to Comb. In terms of maximum frequency, algorithms im-
plemented directly run 1.11 to 2.4 times faster compared to
the Pipe method; and 4.01 to 9.48 times faster compared to
Comb method. In conclusion, it remains the case that for
optimal speed, and efficient area usage, direct instantiation
should be used when mapping complex arithmetic expres-
sions to DSP Blocks.

5. CONCLUSION AND FUTURE WORK

In this paper, we analysed the efficiency of DSP Block in-
ference in the synthesis of arithmetic flow graphs. We com-
pared a combinational implementation, a DSP-Block-centric
pipelined implementation, and direct instantiation using var-
ious DSP Block configurations. We implemented 8 different
circuits and showed that the direct instantiation generally re-
sults in less resource usage and higher operating frequency
compared to conventional approaches.

For future work, we intend to explore how we can au-
tomate this mapping from RTL code and high-level descrip-
tions. Since the DSP Blocks are dynamically configurable, it
would also be possible to synthesise resource-shared imple-
mentations that involve reconfiguring the DSP Block. We
intend to investigate this as a way of mapping within re-
source constraints.

6. REFERENCES

[1] O. Maslennikow and A. Sergiyenko, “Mapping DSP Algo-
rithms into FPGA,” in Int. Symp. on Parallel Computing in
Electrical Engineering, Sept 2006, pp. 208–213.

[2] J. Dalcolmo, R. Lauwereins, and M. Ade, “Code generation
of data dominated DSP applications for FPGA targets ,” in
Proc. Int. Workshop on Rapid System Prototyping, Jun 1998,
pp. 162–167.

[3] R. Lauwereins, M. Engels, M. Ade, and J. Peperstraete,
“Grape-II: a system-level prototyping environment for DSP
applications,” Computer, vol. 28, no. 2, pp. 35–43, Feb 1995.

[4] Y. Hirakawa, M. Yoshida, K. Harashima, and K. Fukunaga, “A
method of data path allocation by pattern matching on the data
flow graph,” in IEEE Signal Processing Society Workshop on
VLSI Signal Processing, Oct 1995, pp. 254–263.

[5] P. Necsulescu and V. Groza, “Automatic generation of VHDL
hardware code from data flow graphs,” in IEEE Int. Symp. on
Applied Computational Intelligence and Informatics (SACI),
May 2011, pp. 523–528.

[6] P. Jamieson, K. Kent, F. Gharibian, and L. Shannon, “Odin
II - An Open-Source Verilog HDL Synthesis Tool for CAD
Research,” in IEEE Int. Symp. on Field-Programmable Custom
Computing Machines (FCCM), May 2010, pp. 149–156.

[7] H. Y. Cheah, S. A. Fahmy, D. L. Maskell, and K. Chidamber,
“A Lean FPGA Soft Processor Built Using a DSP Block,” in
ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays,
Feb 2012, pp. 237–240.

[8] S. Gopalakrishnan, P. Kalla, M. Meredith, and F. Enescu,
“Finding linear building-blocks for RTL synthesis of polyno-
mial datapaths with fixed-size bit-vectors,” in IEEE/ACM Int.
Conf. on Computer-Aided Design, Nov 2007, pp. 143–148.

[9] “Polynomial Test Suite.” [Online]. Available: http://www-
sop.inria.fr/saga/POL/


